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Purpose: The analysis of breath-print, has been proposed as an attractive alternative to investigate possible 
biomarkers of Chronic Obstructive Pulmonary Disease (COPD). The aim of the present study was to discriminate 
between healthy subjects, patients with COPD associated with smoking (COPD-S) and patients with COPD 
associated with household air pollution (COPD-HAP). 
Methods: A cross-sectional study of 294 participants was conducted, 88 with smoking associated COPD, 28 
associated with HAP and 178 healthy subjects. Breath-print analysis was performed by using the Cyranose 320 
electronic nose. Group data were evaluated by Principal Component Analysis (PCA), Canonical Discriminant 
Analysis (CDA) and Support Vector Machine (SVM) and the test’s diagnostic power by means of ROC (Receiver 
Operating Characteristic) curves. 
Results: The results indicated that the breath-print of patients with COPD is different from the one of healthy 
subjects explaining a variability of 93.8% with a correct prediction of 97.8% and correct classification of 100%, 
also positive and negative predictive value of 96.5 and 100% respectively. Furthermore, the breath-print of 
exhaled breath from patients with COPD-S and COPD-HAP does not present any difference. 
Conclusions: The breath-print of exhaled breath from patients with COPD-S and COPD-HAP does not present any 
difference, which demonstrates that the breath-print is related to the disease and not to causality. With these 
results, the analysis of the breath-print of COPD is proposed as an alternative for a screening method in future 
clinical applications.   

1. Introduction 

Chronic Obstructive Pulmonary Disease (COPD) is one of the leading 
causes of death worldwide. The World Health Organization estimates 
that more than 3.2 million deaths occur annually and 64 million people 
suffer from the disease [1]. In high-income countries, there is the 
available information on the prevalence, morbidity, and mortality of 
COPD, however even in these countries, reliable information on the 
epidemiology of the disease is limited due to the cost and difficulties in 

diagnosis [2,3]. In fact, it is recognized that 90% of the deaths associated 
with this disease are in low- and middle-income countries, the main risk 
factors for this disease being smoking, household air pollution (HAP) 
from solid fuels, including biomass burning, particles in occupational 
environments, ozone and passive smoking [4,5]. Prompt and adequate 
detection of COPD is essential for the prognosis of this chronic disease 
[6]. Lung function tests such as spirometry are essential in the diagnosis, 
however, none of the parameters derived from the test are as specific in 
detecting peripheral damage to small airways [7], furthermore, in a 
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study of epidemiological surveys from 44 sites in 27 countries, it was 
associated that there is a high probability of under-diagnosis of COPD 
with male sex, young age, recent smoking or never having smoked, less 
education, lack of previous spirometry and any severe airflow limitation 
[8]. On the other hand, the study requires considerable time, physical 
effort from the patient and must be carried out by trained technicians 
according to international guidelines. 

Some strategies have advocated the search for screening techniques 
to improve the rate of diagnosis more easily, cost-effectively and 
quickly. The role of Volatile Organic Compounds (VOCs) in exhaled 
breath has been widely studied for the evaluation of airway inflamma-
tion and screening for COPD, asthma, lung cancer, among other diseases 
[9–15]. These compounds are products of metabolic and inflammatory 
processes related to physiopathological changes that take place in the 
respiratory tract [16]. 

Thus, the analysis of VOCs in exhaled breath, called breath-print, has 
been proposed as an attractive alternative to investigate possible bio-
markers of lung diseases, assuming that the traces of the compounds are 
specific to the disease and without the influence of causality. Therefore, 
the objective of the present study was to determine the discrimination in 
three population groups: i) healthy subjects, ii) patients with COPD 
associated with smoking, and iii) patients with COPD associated with 
household air pollution (HAP). 

2. Materials and methods 

2.1. Patients, healthy subjects and study design 

A cross-sectional case-control study was conducted at the Ismael 
Cosío Villegas National Institute of Respiratory Diseases (INER), which 
belongs to the Mexican Ministry of Health, a referral center for respi-
ratory diseases in Mexico City (2240 m above sea level), taking care 
mostly of uninsured patients. The study was reviewed and approved by 
the Ethics Committee of INER CONBIETICA-09-CEI-003-20160427 with 
number C54-18. 

2.2. Lung function test 

Spirometry (EasyOne® Plus Diagnostic portable spirometer) was 
performed to all study participants before and after the administration of 
400 μg of Salbutamol, following the guidelines of the American Thoracic 
Society/European Respiratory Society (ATS/ERS) standards and by 
trained experienced technicians [17]. The reference values for spirom-
etry were those established for the Mexican-American population from 
the National Health and Nutrition Examination Survey III study 
(NHANES III) [18]. The significant response to the bronchodilator was 
defined as an increase in Forced Expiratory Volume at the first second 
(FEV1) in the post-bronchodilator test equal to or greater than 200 mL 
and 12%. The post-bronchodilator value of FEV1, Forced Vital Capacity 
(FVC) expressed as percentage of predicted, and the ratio of FEV1/FVC 
were determined [19]. 

Airflow obstruction was defined as a post-bronchodilator ratio of 
FEV1/FVC<0.7, and,the severity was rated according to guide GOLD 
(Global Iniciative for Chronic Obstructive Lung Disease) stages: GOLD 1 
(FEV1 � 80% of predicted value), GOLD 2 (50% � FEV1 < 80% of 
predicted value), GOLD 3 (30% � FEV1 < 50% of predicted value), 
GOLD 4 (FEV1 < 30% of predicted value) [19]. The group of patients 
diagnosed with COPD in addition to airflow obstruction (post-
bronchodilator FEV1/FVC<0.7), had a history of smoking or a history of 
exposure to smoke from biomass burning, presented chronic cough with 
sputum and/or dyspnea, but were clinically stable and without pulmo-
nary exacerbation in the last four weeks according to GOLD 2019 
guidelines [19]. 

Five comparisons between breath-prints were assessed: a) COPD vs. 
Healthy subjects; b) COPD-Smokers (COPD-S) vs. Healthy subjects; c) 
COPD-associated with HAP (COPD-HAP) vs Healthy subjects; d) 

COPD-S vs COPD-HAP; and e) Mild COPD (GOLD stage 1 and 2) vs 
moderate and severe COPD (GOLD stage 3 and 4) and were also 
compared. 

Patients were required to suspend short-acting bronchodilators and 
inhaled corticosteroids for at least 12 h and long-acting bronchodilators 
for at least 24 h before the day of exhaled breath sampling. For all 
groups, participants with a history of upper or lower respiratory tract 
infection, asthma or other lung disease were excluded from the study. 

Healthy subjects were considered if they lacked absence of chronic 
cough/sputum or dyspnea; had a normal chest physical examination, 
with post-bronchodilator FEV1 values > 80% of those predicted, FEV1/ 
FVC ratio >0.7 with a reversibility of less than 12% in FEV1 after 
administration of 400 μg salbutamol, as well as, absence of airway hy-
perreactivity. They also reported a history of smoking less than 5 pack- 
years and were not current smokers, and no use of wood or biomass for 
cooking. 

2.3. Collection of exhaled breath 

The sample collection was based on the European Respiratory Soci-
ety guide [20]; relaxed participants underwent three deep inhalations 
and then exhaled deeply into Breath Collection Bags (BCB) which con-
sisted of a 1.4 L metalized plastic ball previously purged twice with 
ultra-pure nitrogen [21]. The sample was collected in duplicate from 
healthy patients and subjects in fasting conditions, without smoking 
before the study, without oral hygiene and before taking the medica-
tions. The samples were transported at 4 �C and analyzed on the same 
day. Besides, an environmental control sample was taken to eliminate 
possible interference [22]. 

2.4. Analysis of exhaled breath 

The Cyranose 320 (Sensigent ®, California, US) was employed to 
determine the breath-print of the study groups. This equipment is a 
portable electronic nose that has 32 carbon polymer composite che-
moresistors incorporated into a matrix that adsorbs the VOCs from the 
exhaled breath causing an increase in the electrical resistance of each 
sensor. 

Each chemoresistor possesses different properties in the adsorption 
of volatile organic compounds producing varying degrees of response 
due to their polymer composition (poly-vinyl butyral, polyvinyl acetate, 
polystyrene, and polyethylene oxide) and the conduction nanoparticles 
(black carbon and carbon nanotubes) they are comprised of. 

For sample processing, the samples were incubated at 37 �C for 5 min 
before reading with the electronic nose. The configuration of the elec-
tronic nose consisted of a constant flow rate of 120 mL/min for 40 s of 
baseline recording with ultra-pure nitrogen and a 90-s sample analysis 
period, then increased to a flow rate of 180 mL/min of ultra-pure ni-
trogen for sample line purging and air intake, with a substrate temper-
ature of 32 �C. During the analysis, the instrument recorded the increase 
in electrical resistance of each sensor as a result of the adsorption of 
VOCs onto the sensors. As an internal quality control, the resistance of 
the 32 sensors was recorded every day of the reading to evaluate the 
quality of the analysis (Table 1. Supplementary material). 

2.5. Statistical analysis 

The multivariate analyses were performed using the increase in 
resistance of the 32 sensors obtained from the fractional difference: ΔR/ 
Ro ¼ (Rmax-Ro)/Ro where Rmax is the maximum system response of 
each sensor, and Ro is the reference reading of each sensor (ultra-pure 
nitrogen). 

Subsequently, a summation normalization was performed to reduce 
the environmental effect by dividing the response of each sensor by the 
sum of the absolute values of the response of each sensor: (ΔR/Ro)i¼
(ΔR/Ro)i/

P
|ΔR/Ro|j. 
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In addition, a self-scaling was carried out to eliminate the effects of 
the magnitude of the sensor responses, by subtracting the average of the 
samples from the individual response of each sample and dividing it by 
the standard deviation of the samples. 

To capture the greatest amount of variability in the data, Principal 
Component Analysis (PCA) was performed using the Chemometric Data 
Analysis software CDAnalysis (Sensigent®), thus reducing the data from 
the 32 sensors to three main components. 

The sensors with a higher importance index were used to obtain the 
canonical discriminant analysis (CDA) and support vector machines 
(SVM) discrimination models through a cross-validation value (leaving 
one out of the procedure and thus predicting the group association and 
obtaining overall classification success rates) and the Mahalanobis dis-
tance between the group means in units of standard deviation. 

Support vector machines (SVM) is a kernel-based (radial Gaussian) 
supervised learning classification method that determines the optimal 
boundaries (support vectors) that precisely separate groups [23]. By 
giving n training pairs (x1,y1) ,(x2,y2),…,(xn,yn), where xi is an input 
vector and yi 2 {-1, þ1}, the SVM solves the following main problem: 

min
β;b

1
2
βT βþ C

Xn

i� 1
ξi  

s:t: yi
�

βT φðxiÞþ b
�
� 1 � ξi;

ξi � 0; i ¼ 1; 2; :::; n;

Where β is a unit vector (i.e., ||β|| ¼ 1), T denotes the transposition of the 
matrix to Kernel, C is the adjustment parameter denoting the compen-
sation between the margin width and the training data error and ξi � 0 
are stationary variables. For an unknown input pattern x, we have the 
decision function: 

f ðxÞ¼
Xn

i¼1
αiyiKðx; xiÞ þ b  

Where, {αi, i ¼ 1,2, .., n; αi � 0} are the Lagrange multipliers, K (x, xi) �
φ (xi) T φ (xi) is the Kernel function. The Gaussian radial base function is 

used as the kernel function Kðx;  xiÞ ¼ expð � γjjx � xijj
2
Þ  : Where γ 

>0 are fixed parameters, γ jjx � xijj
2 
¼ < x � xi;x � xi > ½14;  23�. 

The performance of the CAP model was evaluated by ROC analysis 
(Receiver Operating Characteristic) with 95% confidence interval and 
threshold value was selected with the highest specificity/sensitivity 
ratio. The analysis was performed using XLSTAT version 12.0 (Stat-
Soft®, Tulsa, Oklahoma, USA) The sensitivity ¼ [number of true posi-
tives/(number of true positives þ number of false negatives)]. 
Specificity ¼ [number of true negatives/(number of true negatives þ
number of false positives)]. The predictive positive value ¼ [number of 
true positives/(number of true positives þ number of false positives)]. 
The negative predictive value ¼ [number of true negatives/(number of 
true negatives þ number of false negatives)]. 

3. Results 

The characteristics of patients with smoking-associated COPD and 
exposure to biomass burning are described in Table 1. The study 
included 294 subjects, 116 patients with COPD (88 patients with COPD- 
S and 28 patients with COPD-HAP) and 178 healthy subjects (Fig. 1). 

The patients with COPD had grade 1 (mild) to grade 4 (very severe) 
airflow limitation; the predominant category according to the grades of 
GOLD obstruction was grade 2 > 1 > 3 > 4 for patients with COPD 
caused by exposure to biomass burning and for patients with COPD 
caused by smoking it was 2 > 4 > 3 > 1. No signs or symptoms of res-
piratory disease were detected in healthy subjects, as well as risk ac-
tivities such as smoking or exposure to wood smoke. 

Fig. 2 (a-e) shows the graphs of the PCAs that were carried out among 
the study groups. Evidently, a separation is observed in the model in 
Fig. 2a, 2b, and 2c, the percentage that explains the variability between 
the groups is 93.76%, 93.02%, and 93.48%, respectively. In the models 
in Fig. 2d and 2e, it is shown that there is no separation between the 
groups either by causality (2d) or by stages of the disease (2e). 

Twenty-one sensors with the highest importance indexes were used 
to perform the canonical discriminant analysis (CDA) (Table 1 Supple-
mentary material). Table 2 shows the percentage of correct classification 
of the proposed models, the results show a high correct classification in 
the model a, b and c, however, the models do not allow discrimination 
between causality (model d) and disease statification (model e) (Fig. 1 
Supplementary material). 

Table 3 shows the correct classification of the models performed 
through the Support Vector Machine Model. Correct classification of 
100% is observed in models a, b and c, while in models d and e the 
correct classification decreases to 75.7% and 58.2%. (Fig. 2 Supple-
mentary material). 

Likewise, with the values created in the CDA score, the cut-off point 
of � 0.04 was established, which provided a sensitivity of 100% and 
specificity of 97.8%, with a negative predictive value of 100%, a positive 
predictive value of 96.5% and an accuracy of 98.6% across to ROC curve 
(Fig. 3). 

4. Discussion 

In the present study, it was identified that the breath-print analysis is 
able to discriminate between healthy subjects and patients with COPD 
using the electronic nose. 

The main contribution of our study is based on the analysis of well- 
characterized groups of patients with COPD caused by smoking and 
exposure to household air pollution, which does not achieve discrimi-
nation. This is important because it indicates that breath-print is asso-
ciated with the disease and not with causality. According to the 
literature review, this is the first study to analyze the comparison be-
tween the main causalities of COPD. 

De Vries and collaborators conducted a similar study among the 
discrimination of patients with COPD and healthy subjects with an 

Table 1 
Clinical characteristics of patients with COPD.  

Parameters COPD-S (n ¼
88) 

COPD-HAP (n ¼
28) 

Healthy (n ¼
178) 

Age (year) 71.5 � 9.5 76.7 � 7.0 45 � 6.0 
Sex (%) 

Men 77.3 7.1 15.0 
Women 22.7 92.8 85.0 

Height (m) 1.62 � 0.08 1.44 � 0.06 1.63 � 0.05 
Weight (Kg) 67.9 � 15.9 55.4 � 10.2 62.0 � 7.0 
BMI (Kg/m2) 25.5 � 5.3 26.6 � 4.6 23.3 � 2.8 
Comorbidities (%) 

SAH 22.7 35.71 – 
T2DM 10.2 14.3 – 

Smoking (Pack-Years) 40.0 
(7.5–134.0) 

4.5 (1.0–7.4) 1.0 (0 � 2.4) 

Biomass exposure (hour- 
Years) 

0 320.5 (120–840) 0 

FEV1 (%P) 54.9 � 22.7 65.1 � 23.3 – 
FVC (%P) 81.9 � 22.3 81.1 � 23.8 – 
FEV1/FVC 0.48 � 0.20 0.61 � 0.1 – 
GOLD (%) 

I 15.9 25 – 
II 31.8 53.6 – 
III 22.7 10.7 – 
IV 29.5 10.7 – 

HAP: Burning biomass fuel. Mean � standard deviation; median (minimum- 
maximum). SAH: systemic arterial hypertension. T2DM: Type 2 Diabetes mel-
litus. FEV1: Forced Expiratory Volume to the first second. FVC: Forced Vital 
Capacity, both expressed as percentage of predicted (%P). 
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electronic nose composed of five oxide semiconductor sensor arrays. The 
model they proposed was built with 31 patients with COPD and 45 
healthy subjects and achieved an accuracy of 78% with a sensitivity of 
80% [24]. 

On the other hand, other research has focused on the differences 
between COPD breath-print concerning other lung diseases. Studies with 
the Cyranose 320 reported that the patterns of VOCs in exhaled breath of 
patients with non-small cell lung cancer (n ¼ 10) and patients with 
COPD (n ¼ 10) are discriminated, pointing out that these differences are 
due to the physiopathology of the disease [9]. Tirz�ıte and collaborators 
managed to obtain discrimination patterns using SVM with a 100% 
correct classification among lung cancer with COPD (n ¼ 79) with 
respect to healthy subjects (n ¼ 78), however when the breath-print is 
analyzed among lung cancer with COPD with only COPD (n ¼ 15) it 
reaches 33.3% of correct classification, this could be probably due to the 
small number of samples and a hypothesis proposed in this study is the 
presence of VOCs in lung cancer associated with oxidative events, which 
suggests a change in the pattern of breath-print and cannot differentiate 
between the groups [14]. This specificity is clinically relevant, we 
believe that the creation of disease-specific mathematical models can 
substantially improve population screening analyses and should be 
accompanied by clinically meaningful criteria such as smoking rate, or 
the number of wood hours in case of marginalized communities, as this 
indicates disease development. Our results indicate that the causal fac-
tors of COPD are not related to breath-print and provide an adequate 
differentiation between healthy subjects and patients so that this tech-
nique can be used in a point of care setting. Furthermore, there was no 
statistical difference between the age of the patients, but in the pro-
portion of sexes, we observed that there are more women in the 
COPD-HAP group, due to cultural issues. This result shows that 
breath-print is not attributed to sex and age, confirming that VOCs are 
attributed to the disease and not to anthropometric parameters as 
indicated in other studies [10,25]. 

Although we obtained the ability to discriminate between predefined 
patients with COPD, diagnosed with gold tests (spirometry) and not sick 
as indicated by international guidelines [26], the model shows that the 
electronic nose is unable to identify the stages of the disease. 

This result is consistent with the one performed by Incalzi and col-
laborators, where they demonstrated in 25 patients that there was no 
difference in VOCs in stages 1–3 and a difference was seen in stage 4 
[27]. On the contrary, it has been shown that VOC profiles reflect 
different patterns associated with oxidative stress and inflammatory 
phenotype by eosinophils or neutrophils in COPD discriminating be-
tween stages 2 and 3 of stage 4 [28]. These results agree with 
Martinez-Lozano and collaborators, were using time of flight mass 
spectrometry they can discriminate between stage 1 and 2 with respect 
to stage 3 and 4 with a sensitivity of 92.3% and specificity of 83.3%. 
They also point out that the main metabolites that make the difference 
are acetone and indole [29]. The main advantage of mass spectrometry 
is that it allows the characterization of molecules, in addition to detec-
tion limits reaching parts per billion and parts per trillion, this is 
important because it contributes to the elucidation of altered metabolic 
pathways and possible therapeutic targets [30]. Nevertheless, this 
equipment cannot be used in screening methods due to the high cost, 
especially in low- and middle-income countries where, in parallel to 
smoking, the use of firewood increases the number of people at risk [13, 
31]. 

The limitations of our study include the fact that it was carried out in 
only one center, and although the number of patients with COPD and 
healthy subjects is relatively large, different lung diseases have been not 
included to evaluate the discrimination of COPD in the presence of 
comorbidities such as lung cancer. Therefore, a multicenter study is 
needed to contribute to the development of this technology so that it can 
be used as a population screening. 

It is important to note that sensitivity and specificity are critical in 
test validation and that our results are very high at up to 100% and 

Fig. 1. Flow diagram shows COPD patients excluded for exhaled breath analysis by electronic nose.  
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Fig. 2. Principal Component Analysis model of the breath-print of the proposed groups in the study. Fig. 2a) COPD vs Healthy subjects, 2b) COPD-S vs Healthy 
subjects; 2c) COPD-HAP vs Healthy subjects; 2d) COPD-S vs COPDHAP; 2e) stages of the disease. 

Table 2 
Percentage of correct prediction obtained in canonical discriminant analysis.  

Canonical discriminant 
analysis model 

Number of 
PCs 

Percentage of Correct 
Prediction 

p-value 

a) COPD vs Healthy 3 97.8 <0.001 
b) COPD-S vs Healthy 5 98.1 <0.001 
c) COPD-HAP vs Healthy 7 97.5 <0.001 
d) COPD-S vs COPD-HAP 10 2.5 >0.05 
e) Mild COPD vs Moderate and 

severe COPD 
5 1.6 >0.05 

PC: Principal components. 

Table 3 
Cross-validation values for the models’ discrimination.  

Support Vector Machine Model Cross-Validation Correct Rate 
(%) 

a) COPD vs Healthy 100 
b) COPD-S vs Healthy 100 
c) COPD-HAP vs Healthy 100 
d) COPD-S vs COPD-HAP 75.7 
e) COPD (GOLD 1 and 2) vs COPD (GOLD 3 and 

4) 
58.2  
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97.8%, respectively, which is consistent with other studies [32,33]. As 
we consider that by increasing the number of patients and healthy 
subjects, the positive and negative predictive values can be improved 
and thus the mathematical model of breath-print can be used as a 
method of screening for COPD in the general population. 

5. Conclusion 

It has been demonstrated that exhaled breath analysis technology 
can discriminate healthy subjects with respect to patients with COPD. 
This study was also included two clinically relevant groups of patients 
with COPD associated with the two main causes, smoking and the use of 
biomass as fuel, demonstrating that there are no differences between 
breath-prints. 

This provides a simple, fast and non-invasive approach to testing for 
COPD without the need for patient effort, thus facilitating an excellent 
screening method for future clinical applications. 
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